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Abstract. Manual evaluation of medical images, such as MRI scans of brain
tumors, requires years of training, is time-consuming, and is often subject to
inter-annotator variation. The automatic segmentation of medical images is a
long-standing challenge that seeks to alleviate these issues, with great potential
benefits for physicians and patients. In the past few years, variations of Convolu-
tional Neural Networks (CNNs) have established themselves as the state-of-the-
art methodology for this task. Recently, Graph-based Neural Networks (GNNs)
have gained considerable attention in the deep learning community. GNNs ex-
ploit the structural information present in graph data by aggregating information
over connected nodes, allowing them to effectively capture relation information
between data elements. In this project, we propose a GNN-based approach to
brain tumor segmentation. We represent 3D MRI scans of the brain as a graph,
where different regions in the images are represented by nodes and edges connect
adjacent regions. We apply several variations of GNNs for the automatic segmen-
tation of brain tumors from MRI scans. Our results show GNNs give reasonable
performance on the task and allow for realistic modeling of the data. Further-
more, they are far less computationally expensive and time-consuming to train
than state-of-the-art segmentation models. Lastly, we assign Shapley value-based
contribution scores to input MRI features to learn what features are relevant for
a particular segmentation, generating interesting insights into explaining the pre-
dictions of the proposed model.
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1 Introduction

Over 87,000 people are expected to be diagnosed with brain tumors in 2020 [19]. With
a low survival rate for malignant tumors, timely detection and diagnosis of brain tu-
mors are crucial for developing effective treatment plans for the patients. Neuroimaging
using multimodal magnetic resonance imaging (MRI) is integral in the diagnosis and
management of brain tumors, including for surgical and radiation treatment planning,
longitudinal tumor monitoring, treatment response evaluation, and predictive analysis.
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These require accurate delineation of the tumor boundary on the MRI images to char-
acterize the tumors.

Automatic tumor segmentation methods seek to address the time and inter-observer
variability limitations posed by manual segmentation. Furthermore, they underlie ad-
vances in quantitative tumor analysis and clinical workflow automation. The develop-
ment of such automatic segmentation methods is challenging due to several intrinsic
and extrinsic factors, such as the heterogeneity in appearance and shape of different tu-
mor types on MRI, a lack of standardized imaging protocols, variability in equipment,
and the presence of imaging noise and artifacts. Furthermore, advances in neuroimag-
ing and the clinical management of brain tumors have increased the desired complexity
of the segmentation, with an emphasis on a compartmentalized segmentation of the
tumor into sub-regions describing necrosis, enhancing and non-enhancing tumor and
vasogenic edema.

The use of deep learning methods for brain tumor segmentation has progressed
rapidly in the past few years [4,16]. As opposed to conventional segmentation models
that rely on the extraction of pre-defined features from the images [10,14,20], deep
learning models automatically learn relevant features to perform accurate segmentation.
However, current deep learning segmentation methods [9,8,34,18] are computationally
intensive, require the division of the images into local patches, and do not explicitly
account for brain connectivity information. They fail to capture the global structure of
the 3D images adequately or relational dependencies between different regions in the
tumor. We hypothesize that these properties are important for accurate and robust brain
tumor segmentation.

We propose using Graph-based Neural Networks (GNNs) to segment brain tumors
from multimodal 3D MRI. Unlike previous methods, GNNs allow for the processing
of the entire brain simultaneously, while explicitly incorporating both local and global
connectivity into their predictions by aggregating information across neighboring nodes
in the graph. As such, GNNs effectively capture relational information between the data
elements. Our framework, summarized in Fig. 1, first represents the 3D MRI scans of
the entire brain as a graph, where nodes represent different regions in the images and
edges connect adjacent regions. Next, a GNN classifies each node of the graph into
healthy tissue, enhancing tumor, necrotic tissue and non-enhancing tumor, or edema.
The node predictions are subsequently mapped back to their respective supervoxels on
the MRI. We explore different GNN models for brain tumor segmentation from MRI
scans on the BraTS 2019 challenge [16,4,3]. The best performing model achieves good
performance that is comparable to other recent work. We also show that our approach
is between 5 and 15 times faster than such computationally intensive methods. Finally,
we provide explanations for the predictions of the deep learning GNN models in terms
of the relative contributions of the inputted MRI modalities. We generate these explana-
tions via Shapley values, a game-theoretic approach for fairly attributing contributions
to an overall outcome among the game participants. Such interpretations are vital for
applications of these models in the health domain.
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Fig. 1: Model Overview. MRI Modalities are first stacked to create one 3D Image with
4 channels. 1) Combined modalities are clustered into supervoxels. 2) Supervoxels are
converted to a graph structure such that each supervoxel becomes one graph node. 3)
Graph is fed through a Graph Neural Network, which predicts a label for each node. 4)
Node predictions are overlaid back onto the supervoxels.

2 Related Work

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) have, so far, been the most successful models
for fully automatic brain tumor segmentation. They excel at object classification and
segmentation tasks by classifying pixels based on surrounding image content through
2D or 3D convolutional filters. These convolutional filters are translation invariant and
can detect image edges and combine them into higher-level image features, making
them well suited for image processing. The three best performing models of the recent
2018 BraTS Challenge [16,3,4] all consisted of CNN-based architectures. The BraTS
challenge is a brain tumor segmentation competition where teams submit their models
for testing on a multi-institutional database of MRI scans. The best performing model
by Myronenko et al. [18] used an autoencoder-based regularization with a 3D-CNN to
achieve state-of-the-art segmentation results. The next best-performing work by Isensee
et al. [9] proposed that a well trained baseline 3D U-net could outperform other models
with various architectural modifications. Finally, McKinley et al. [15] used a CNN with
contextual and attentive information and tied for third place with Zhou et al. [34] who
used a U-net with a novel loss function that modeled noise and uncertainty.

These CNN-based architectures take an extended amount of time to train, and many
have harsh GPU-requirements. The best performing model requires 34GB of VRAM [18]
and most require anywhere from 8 to 12 GB of VRAM. Combined with the training
times greater than a week, this constitutes a resource bottleneck on training and evalu-
ating models on new datasets. Furthermore, these models generally require the division
of the images into local patches for training and segmentation and, hence, fail to capture
the global information of the entire MRI scan.

2.2 Graph Neural Networks

The computational burden of segmentation with CNNs can be circumvented by sum-
marizing the MRI images as a graph representation. This approximation reduces image
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complexity by two orders of magnitude, from millions of voxels down to several thou-
sand nodes, while preserving most image information. A recently popularized form of
deep learning, Graph Neural Networks, is specifically designed to learn over such graph
structures. The theoretic underpinnings of learning on graphs have been established for
close to a decade [7,22], but GNNs have only recently seen widespread use following,
among others, Kipf and Wellings’s [12,5,35] introduction of the graph convolutional
network (GCN). Their work refined the convolution operation on graph-structured data
and established a layerwise approach to learning over graphs, thus aligning it more
closely to existing deep learning paradigms.

Subsequently, Hamilton et al. [6] developed GraphSAGE, which extends GCN [12]
by generalizing graph learning as a series of alternating sampling and aggregation steps
to share information across a graph. In a GraphSAGE layer, for each node, a prede-
fined number of neighbors are sampled. Their information is aggregated by combining
their features and applying a learnable transformation, the output of which becomes the
node’s features in the next layer. Notably, GraphSAGE allows GNNs to be extended to
the inductive setting, generalizing to previously unseen graphs.

The Graph Attention Network (GAT) developed by Velickovic et al. [29] introduced
the self-attention mechanism to graph learning. Self-attention is an operation which
allows each input feature to assign weights, or “attend”, differently to the other input
features, and has shown the state-of-the-art performance on natural language processing
(NLP) and other tasks (Vaswani et al. 2017) [28]. In the GAT formulation, attention is
instead computed between each graph node and its neighbors. Like GraphSAGE, GAT
readily allows for inductive learning and gives the state-of-the-art performance on an
inductive protein-protein interaction (PPI) task.

GNNs have previously been applied to medical image segmentation tasks. Yan et al.
2019 [32] successfully applied a GCN variant, ChebNet, to segment brain tissue (gray
matter, white matter, cerebro-spinal-fluid). They first used the SLIC algorithm [1] to
cluster MRIs into supervoxels, and then predicted the tissue type of each supervoxel.
The present work is partially inspired by their approach and follows a similar work-
flow. Juarez et al. [11] proposed a joint U-Net-GNN model for airway segmentation
from CT scans and matched the state-of-the-art performance. They replaced the last
two layers of a U-Net with a sequence of graph convolution layers, which allowed the
model to aggregate information globally across the entire CT scan while maintaining
the pattern-recognition capabilities of the early convolutional layers. However, GNN-
based methods have not previously been attempted for brain tumor segmentation, and
thus, we here explore the applicability and performance of several GNN variants on the
same.

2.3 Explanation of Deep Learning models

Many interpretation methods for deep learning fall under the umbrella of saliency
maps [23,27,26]. These methods utilize the gradients computed by a model with re-
spect to the input to highlight regions of interest, i.e., those where the output changes
greatly in response to small input changes. Saliency maps are especially useful in image
processing, as they allow for easy visualization of pixel saliency and visual interpreta-
tion of results. However, one shortcoming of saliency maps is that they are often driven
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by the input image and largely agnostic to the model. In particular, it has been shown
that the saliency outputs for a model trained on random labels can closely resemble
those of a legitimate model, indicating that the saliency map is less a reflection of the
model than of the input [2].

An interpretability method explicitly developed for GNNs is GNNExplainer [33].
GNNExplainer learns a mask on both the edges and features of an input graph to build
a subgraph that seeks to summarize the connections and features that lead to the pre-
diction on a node of interest. Unlike more general methods, GNNExplainer allows for
interpreting how graph connectivity factors into a GNN prediction. A drawback of GN-
NExplainer is that it is difficult to optimize for larger subgraphs. We find that infor-
mation from nodes far away from the target node often contributes to a prediction for
tumor segmentation. Consequently, GNNExplainer was unfortunately unable to build
meaningful subgraphs.

In this work, we interpret our results using SHAP values [13]. SHAP values are
a computational approximation of Shapley values, a method for assigning payouts to
players in a cooperative game, or in this case, contribution values to features in a predic-
tion task. SHAP values maintain many of the theoretical properties of Shapley values,
such as additivity and consistency, which make them attractive as a interpretative tool.
Section 3.7 presents the details of the SHAP values.

3 Methods

In this section, we first introduce the dataset we use and associated pre-processing fol-
lowed by a description of transforming patient images into a graph structure. Subse-
quently, we present in greater detail our experimental setup. Finally, we describe our
use of SHAP values to help interpret the results of the proposed model.

3.1 Imaging Data

The imaging data used in this study, including ground truth annotations, were ob-
tained from the training data of the BraTS 2019 challenge [3,4,16]. The dataset con-
sists of 76 low-grade glioma and 259 high-grade glioma MRIs from 19 contribut-
ing institutions. Each sample is composed of four imaging modalities obtained from
the same patient: T2-weighted fluid attenuated inversion recovery (Flair), T1-weighted
(T1), T1-weighted contrast-enhanced (T1CE), and T2-weighted (T2), which provide
complementary information about the tumor. All provided imaging data has been skull-
stripped, normalized to a resolution of 1mm3, and spatially aligned to the other modali-
ties for the same patient [4]. Domain experts manually segmented the provided ground
truth annotations following a standardized annotation protocol, and they were further
reviewed for consistency and accuracy by additional neuro-radiologists. The ground
truth annotation labels were as follows:

Label 0 Normal brain tissue
Label 1 Volume comprising the necrotic core and non-enhancing gross tumor abnor-

mality
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Label 2 Vasogenic edema
Label 4 Active core or enhancing region within the gross tumor abnormality

Label 3 (non-enhancing tumor) was removed from the competition as a distinct re-
gion. Instead, it was combined with Label 1 (necrotic tumor) because the BraTS orga-
nizers found that it can be subject to significant inter-annotator variance and therefore
introduce a bias into the ground truth segmentation based on the annotating institu-
tion [4].

For this paper’s purposes, one set of MRIs (all four modalities) from the same pa-
tient is referred to as a patient sample.

3.2 Data Preprocessing

Before segmentation, each MRI is cropped to the tightest possible bounding box of the
brain tissue. This step is accomplished by excluding all image planes where all voxels
have zero intensity. Next, we standardize each modality separately to a mean of zero and
a standard deviation of one. Bias correction of the MRIs did not improve performance,
so we report our final results without bias correction (two-sided t-test, p ≈ 1).

3.3 Graph Construction

In order for the patient samples to be used as training examples for a GNN, they must
first be converted to graph representations (Fig. 1 Step 2). To create the graph nodes,
all four MRI modalities are concatenated to create one 3D image with four channels.
The combined image is then fed through the Simple Linear Iterative Clustering (SLIC)
algorithm [1] to generate a set of k supervoxels, where k is a tunable parameter of
the SLIC algorithm. SLIC uses a K-means approach to cluster voxels that are similar in
both intensity values and physical location in the brain (Eq. 1). In the concatenated MRI
images, the spatial distance between two voxels is simply the 3D Euclidean distance
between their coordinates. The intensity distance is the Euclidean distance calculated
across all four intensity channels. A compactness parameter, m, controls the trade-off
between intensity and spatial information.

The distance, D, calculation between two voxels i and j used for the supervoxel
clustering thus becomes

D =

√
dI

2 +

(
ds
S

)2

m2 (1)

dI =
√
(IT1,i − IT1,j)2 + (IT1CE,i − IT1CE,j)2 + (IT2,i − IT2,j)2 + (IFLAIR,i − IFLAIR,j)2

ds =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

where x,y,z are the spatial position of a voxel in image coordinates, I is the intensity
value of a modality at that pixel, and S is the expected spacing between supervoxels.
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After clustering, supervoxels outside of the brain mass, that is, those with zero in-
tensity, are filtered out, typically reducing the number of supervoxels by a factor of
2. Each remaining supervoxel is then assigned a feature vector consisting of the 10th,
25th, 50th, 75th, 90th percentiles of its constituent voxels’ intensity values across all
four modalities. This formulation results in a feature vector of length 20 for each super-
voxel. We chose to use quantiles as it empirically performed better than only the mean
intensity. Each supervoxel is also assigned a label, which is determined by finding the
most common label (mode) of all of its constituent voxels in the ground truth labeling.

To determine the appropriate values of k and m used in constructing the graphs,
we calculated the achievable segmentation accuracy (ASA) of several different com-
binations of values on a subset of the patient samples. The ASA quantifies how well
the SLIC supervoxels recover the ground truth segmentation. This metric is equivalent
to our model’s accuracy at the voxel level when it predicts every supervoxel correctly.
Because of the class imbalance skewing towards healthy tissue, we only consider the
tumorous region when computing ASA. These results are presented in Section 4.1.

Once the supervoxels are generated for a patient sample, they are used to con-
struct a regular graph. The graph takes the form {N,E}, where N is the set of vertices
(referred to here as nodes), and E is the set of edges between them. Each node in the
graph corresponds to exactly one generated supervoxel and is represented by its feature
vector and its label (during training). The edge set E captures proximity information
between nodes and is composed of undirected and unweighted edges constructed be-
tween each supervoxel and the r supervoxels spatially closest to it in the patient sample,
where r represents the desired degree of the graph. We define the distance between two
supervoxels as the Euclidean distance between the centroids of their constituent voxels’
x-y-z coordinates.

3.4 GNN Details

We evaluated several standard GNN models on their ability to segment the tumors:
GCN [12], GAT [29], and the gcn, mean, and pool variants of GraphSAGE [6]. In
broad terms, each model is composed of individual layers that share information across
adjacent nodes. That is, each layer updates each node’s feature vector as a transformed
combination of its own features and those of its neighbors. As in a standard neural
network, an arbitrary number of these layers can then be stacked sequentially. As the
number of layers increases, the nodes eventually indirectly receive information from
nodes outside of their immediate neighborhood. The mathematical formulations of each
of these graph learning layers are shown in equations 2 through 5.

In each case, h(l)u is the features of node u at layer l, σ is a differentiable, non-linear
activation function, W (l) is a layer specific trainable weight matrix, || is the concatena-
tion operator, and V (u) is the subset of nodes which are are connected to u via the edge
set E, also known as the neighborhood of u.

GCN/GS-gcn:

h(1+1)
u = σ(

1

q
W (l) · (h(l)u +

V (u)∑
v

h(l)v )) (2)
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where q is a normalization constant that differs between formulations from Kipf et al.
[12] and Hamilton et al. [6]. In the case of a regular graph as considered here, however,
q is equal to r, the graph degree, for both.

GS-mean:
h(l+1)
u = σ(W (l) · (h(l)u ||mean(h(l)v ∀ v ∈ V )) (3)

GS-pool:

h(l+1)
u = σ(W (l) · (h(l)u ||max(σ(Wpool · h(l)v ) ∀ v ∈ V (u))) (4)

where Wpool is a global trainable weight matrix.
GAT:

h(l+1)
u =

Bn

b

σ(
∑

v∈V (u)

abuvW
(l)
b hu) (5)

where B are multiple attention heads per layer, which each compute their own pairwise
self-attention (abuv) between each pair of neighboring nodes u and v. Here, we use
ReLU as the non-linear activation function for all models.

3.5 Training and Evaluation Metrics

Prior to training, each patient sample is converted to a graph as described in section 3.3.
We split the dataset into training (60%), validation ( 20%), and test sets (20%).

The input to the GNN is defined formally as a graph of the form {N,E}, and a
feature matrix H ∈ Rn×f , where n is the number of nodes, and f is the number of
features per node. f = 20 for all experiments, as described in section 3.3. The output is
of size n× c, where for each graph node, the model returns the probability of that node
belonging to each of the four classes (c) defined in Section 3.1

To determine the best hyperparameters for each of the GNN variants, we perform a
random hyperparameter search on the validation set. We sweep over regularly spaced
intervals of learning rate from 0.00001 to 0.001, feature dropout between 0 and 0.5,
model depth from 3 to 9, and hidden layer size between 64 and 256. For GAT mod-
els, we additionally examine attention dropout between 0 and 0.5 and attention heads
between 3 and 10 for each layer.

Each model is trained to minimize node-wise multi-label cross-entropy loss (Eq. 6)
on the validation set using the Adam optimizer. The class weights are adjusted to be
inversely proportional to their prevalence in the test set to address the class imbalance.

Loss =
C∑

c=0

(1c=y)wclog(p̂y) (6)

where C are the possible classes, wc is the class weight, y is the true label, 1c=y is
an indicator function, and p̂y is the predicted probability of that label.

Upon convergence, each model is evaluated on the average Dice scores of its pre-
dictions, as shown in Eq. 7.

Dice =
2TP

2TP + FP + FN
. (7)
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where TP , FP , and FN are the number of true positives, false positives, and false
negatives, respectively. True positive voxels are defined as those correctly assigned as
belonging to a specific tumor compartment.

Specifically, we calculate the Dice score for the following tumor subregions: Whole
Tumor (WT: union of labels 1,2,4), Core Tumor (CT: 1,4), and Active Tumor (AT:
4). These metrics provide insight into the ability of the model to assess tumor shape
correctly as well as to differentiate between the different tumor subregions. To allow
for direct comparison to published models in the literature, we report voxelwise Dice
scores, rather than the Dice score on node (supervoxel) classification.

After the best hyperparameters have been selected for each GNN model, we train a
final model on the combined training and validation sets and evaluate it on the test set.
All models were implemented in PyTorch using Deep Graph Library (DGL) [31].

3.6 Baseline method

We use the popular U-net model as a baseline to which to compare the results obtained
with the GNN models. The top-performing 3D-CNN model [18] of the BraTS2018 [16,3,4]
competition uses state-of-the-art GPUs with 34GB of VRAM that were not easily ac-
cessible. Therefore, we selected the second-best model, nnU-net [9], since it requires
only 11GB VRAM and is easily trainable through an included Python module and avail-
able code. Both GNN and CNN models were trained using the same train and test data
sets.

3.7 Model Interpretation

In addition to accurately segmenting brain tumors, it is vital that we understand how
and why our models make their predictions. Model interpretation allows us to 1) ensure
that a model learned robust and generalizable features by cross-referencing important
features with known predictive ones, and 2) identify novel features that aid in tumor
segmentation. One method for assigning the contribution scores of the input features
for a model is to compute Shapley values. The concept of Shapley values is borrowed
from Game Theory. It corresponds to a fair payout to all the players in a cooperative
game, given the outcome of the game. In the case of a predictive model, Shapley values
can be interpreted as the contribution of each input feature towards the prediction of
the model. Formally, they are defined as the average marginal contribution of a feature
to a given prediction when added to a subset of other features, over all possible sub-
sets [17]. Since the complexity of computing exact Shapley values is combinatorial in
the number of features, we instead use the DeepSHAP model [13] to approximate them.
This method takes in a background feature distribution and a query prediction it seeks
to explain, and assigns each feature a score representing its contribution to the model
output. The method calculates the difference in model output when given the true fea-
tures versus background features. Next, it backpropagates this difference back to each
of the input features in a way that satisfies the properties of additivity, consistency, and
local accuracy [25]. The backpropagated value at each feature can then be considered
the part of the difference it is ‘responsible’ for.
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The background feature distribution is obtained by randomly sampling 500 nodes
across the entire dataset of input graphs such that the relative proportions of node labels
remain consistent. Since predictions on nodes cannot be made in isolation (i.e., they
rely on the graph structure and surrounding nodes), SHAP values are computed for
each node in a graph simultaneously.

4 Results

4.1 Supervoxel generation affects achievable accuracy

The graph construction step involves two parameters, the choice of the number, k, and
compactness,m, for the supervoxel generation via SLIC. We find that k = 15000, 20000
and m = 0.1 led to the highest ASA (Supplementary Fig. S1). We choose k = 15000
for all subsequent experiments as k = 20000 required longer to train with no noticeable
improvement in performance.

Of note, even the best SLIC parameters result in an ASA of only 0.9, on average
(Supplementary Fig. S1). The diminished accuracy is caused by SLIC-generated super-
voxels, which encompass voxels of multiple different labels. A drawback of clustering
into supervoxels is that it approximates the brain as a collection of homogeneous re-
gions, while each supervoxel may be somewhat heterogeneous. This effect is especially
pronounced along the borders between tumor subtypes and regions with low contrast.
Here, the transition in intensity across the different modalities and the ground truth la-
bels may not be well aligned, or the intensity differences are gradual, while the shift in
labels is abrupt. In these cases, supervoxels are created with a mixture of labels, yet can
only be labeled as one of them.

The partial volume effects introduced by supervoxel creation adversely affect the
performance of our model. As shown in Supplementary Fig. S2, the voxel-wise Dice
score achieved by our model are significantly lower than the supervoxel-wise Dice score
across all tumor regions for both the training and testing data.

4.2 Brain tumor segmentation performance of different GNN models

We summarize the segmentation results of the different GNN models on the test set in
Table 1. The best performing GNN is a GraphSAGE-pool network with 5 hidden layers
of 256 units each, which is trained until convergence at a learning rate of 0.0001. The
mean aggregator function performs slightly worse than the pooling operator. The worst
performing models by a substantial margin are the GCN models. We hypothesize that
this is because they lack the implicit skip connection built into the mean and pooling
aggregators via the concatenation step. These results are consistent with those reported
by both Velickovic et al. [29] and Hamilton et al. [6] for the performance trend on
protein-protein interaction (PPI) dataset. Surprisingly, GAT performs much worse on
this task than GraphSAGE-pool, despite demonstrating improved performance on other
inductive tasks. Several factors could account for this discrepancy, including a larger
average graph size, less expressive node feature vectors, the different label classification
scheme, or simply because attention may be less suited for brain segmentation.
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Fig. 2: An example segmentation produced by the best-performing GNN model vs.
the ground truth segmentation. Shown are an example horizontal, coronal, and sagit-
tal slice of the same MRI. The colors correspond to the different tumor subtypes: blue
= NET/necrosis, yellow = ET, red = Edema. Tumor predictions are overlaid onto the
T1-Contrast Enhanced Image. There is a close correspondence between the predicted
tumor and the ground truth.

We note that our best performing model is deeper than those reported in previous
works [12,29,6], with 5 hidden layers, rather than 2 or 3. We hypothesize that aggregat-
ing information from further away is more important for tumor segmentation than other
graph learning applications, such as social networks or PPI.

4.3 Performance and runtime results for varying neighborhood sizes

For the best performing model, GraphSAGE-pool, we compare model performance on
datasets with varying graph degrees. We create three different sets of graphs from the
raw MRIs, with identical node features but either 10, 20, or 30 neighbors. These re-
sults are reported in Table 2. While increasing graph degree has no noticeable effect on
model performance on the training set, a higher degree does seem to allow the model
to generalize better to the unseen data in the test set. However, this comes at the cost
of increased training time, with the degree 30 dataset requiring about twice as long to
finish training as the degree 10 dataset.

4.4 Comparison of GNN model with Other Recent Models

Next, we compare the GraphSAGE pool model trained on graphs of degree 30 to nnU-
Net, the second place model in the BraTS 2018 competition [9]. Both models are trained
and evaluated on the same train and test splits. These results are presented in Table 3.
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Table 1: Average Dice coefficients across different GNN models for whole tumor (WT),
enhancing tumor (ET), and tumor core (TC) trained and evaluated on same train-test
split from the training set of the BraTS 2019 data set [16].

Model WT Dice TC Dice ET Dice
GraphSAGE-pool 0.841 0.737 0.671
GraphSAGE-mean 0.804 0.720 0.70
GraphSAGE-gcn 0.536 0.483 0.302
GCN 0.564 0.455 0.341
GAT 0.742 0.687 0.588

Table 2: Average Whole Tumor Dice on training and test sets, along with training time
in hours, for GraphSAGE pool models trained and evaluated on graphs of varying de-
grees.

Model Train WT Dice Test WT Dice Time to Train (hours)
GSpool-10 0.917 0.819 8.7
GSpool-20 0.912 0.832 10.2
GSpool-30 0.915 0.841 15.5

While our GNN model fails to match the state of the art performance of the nnU-Net,
the results nonetheless show that GNNs can successfully perform the segmentation task,
despite the approximations made in graph construction and the relative novelty of induc-
tive graph-learning techniques. In particular, for the segmentation of the whole tumor,
our model achieves a median Dice score that is quite close to nnU-Net. This result in-
dicates that 1) our model is better at outlining the gross tumor than at identifying tumor
subregions, and 2) while on most patient samples, GNN models are quite effective, it
fails to generalize for some, adversely affecting the mean more than the median.

Our GNN-based approach compares favorably to many other experimental tech-
niques submitted to the BraTS challenge in recent years. Serrano-Rubio et al. [24] also
attempt a supervoxel-based technique, coupled with Extremely Randomized Trees, to
achieve Dice scores of 0.80, 0.63, and 0.57 on the official 2018 validation dataset [4] for
whole tumor, core tumor, and enhancing tumor, respectively. Another group, Rezaei et
al. [21], presents a novel Generative Adversarial Network (GAN) termed voxel-GAN,
which seeks to address the label imbalance present in tumor segmentation. This model
achieves mean Dice scores of 0.84, 0.79, and 0.63 on the BraTS 2018 validation set.
Like ours, these models may not achieve state-of-the-art performance, but identify an
important issue in tumor segmentation and attempt to solve it using a novel approach.

Moreover, GNNs’ running requirements are relatively modest. Each GNN model
was trained on 6 GB of GPU memory with a batch size of 4 brains within hours (Ta-
ble 2). By contrast, [18] and [9] require 32GB and 12GB of RAM, take days to weeks
to train to completion, and are limited to a batch size of 1 and 2 image patches, re-
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spectively. The eased computational burden could be an important consideration when
developing online segmentation models that are regularly updated with new MRIs.

Table 3: Results on our test set (a partition of the BraTS2019 training set). We report
both mean and median Dice scores for the whole tumor, tumor core, and enhancing
tumor.

Test Set Results
Statistic Median Mean

Tumor Compartment WT TC ET WT TC ET
nnU-Net [9] 0.929 0.919 0.857 0.906 0.827 0.745
GSpool-30 0.892 0.841 0.783 0.841 0.737 0.672

4.5 Explaining GNN predictions using SHAP values

Finally, we compute the SHAP values for a subset of representative patient samples. We
stratify the computed SHAP values by modality, label, and whether the corresponding
feature value was high intensity (bright) or low intensity (dark) (Fig. 3). Bright intensi-
ties are defined as the top 15% of intensity values within a given modality, while dark
intensities are those in the bottom 15%.

Healthy (Label 0)

Edema (Label 2) Enhancing Tumor (Label 4)

Necrosis and Non-enhancing Tumor (Label 1)A

D

B

C

Fig. 3: SHAP values distribution grouped by label and stratified by modality. Dark Vi-
olin plots correspond to dark image regions in a particular modality, while lighter plots
correspond to bright regions in the corresponding modality. Positive SHAP values indi-
cate that the modality contributes to the prediction of a particular label, while negative
SHAP values indicate that a modality contributes negatively to predicting that label.
Panels A-D represent the SHAP values computed for different tissue labels.
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We identify several trends for each modality’s contribution to different labels in
Fig. 3. Bright T1CE regions and dark FLAIR regions drive the prediction of healthy
tissue (Fig. 3A), while the inverse is predictive of the necrotic and non-enhancing tumor
core (Fig. 3B). Edematous tissue is defined by bright T2 regions and the lack of dark
FLAIR regions (Fig. 3C). Lastly, in the tissue predicted to be enhancing tumor, dark
T2 and dark T1 regions are assigned the highest and lowest SHAP values, respectively
(Fig. 3D). For the enhancing tumor, we also observe that the absolute magnitudes of the
SHAP values are substantially lower than those of the other 3 possible classifications.
This observation indicates that predicting a node as an enhancing tumor is driven by a
“process of elimination”, not by intrinsic characteristics of the enhancing tumor. Rather
than learning which features uniquely identify the enhancing tumor, the model instead
relies on recognizing feature combinations that make the other label unlikely.

Overall, the T1CE and FLAIR modalities are consistently assigned the most vari-
able SHAP values, while the T1 modality remains relatively constant. The relative util-
ity of each modality is consistent with that determined by the BraTS organizers, who
also state that the T1CE and FLAIR modalities are the most useful for manual segmen-
tation [4].

Many of our findings for individual tumor regions also conform to radiation on-
cology practices for manual segmentation of brain tumors. For example, both non-
enhancing tumor and necrosis are typically delineated by dark T1-CE, bright T2, and
bright FLAIR regions of the MRI. Our model’s SHAP value analysis recovers all three
of these trends for the combined NET/necrosis regions. Interestingly, however, it in-
dicates that T1CE and FLAIR have a much more pronounced effect on the prediction
of these regions than T2 does. (Fig. 3B). Vasogenic edema (Label 2) may be visually
assessed by contrasting bright T2 and FLAIR regions with moderate intensity T1CE
and T1. However, it is often difficult to distinguish from other tumorous labels (1 and
4), since these can all appear bright on the T2 and FLAIR images, depending on tumor
grade. Our analysis shows that the model correctly recognizes the brightness trend in
the T2 and FLAIR modalities, but learns a more nuanced classification scheme to cir-
cumvent this issue. Rather than using bright FLAIR intensities as a marker for edema,
it instead learns that a brain region that lacks dark FLAIR intensities are unlikely to
be healthy, and then relies on the other modalities to distinguish further between the
tumor subregions. Lastly, enhancing tumor is traditionally defined as bright (enhanced)
regions in the T1CE modality. Surprisingly, bright T1CE regions are not assigned high
SHAP values for the enhancing tumor, indicating that they play little to no role in the
model’s predictions thereof (Fig. 3D). When coupled with the relative scarcity of en-
hancing tumor labels, this observation could explain the inferior performance of the
model in predicting the enhancing tumor (Label 4).

The above analysis indicates agreement between the feature combinations used by
the model and clinical practice. Furthermore, the analysis provides insight into how the
model distinguishes between regions that are known to be difficult to differentiate on
MRI. Insight into why the results might not be optimal for enhancing tumor will allow
us to address this issue. Such interpretability analysis is key to ensuring the adoption of
deep learning models in healthcare [30].
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5 Discussion

The development of effective automatic segmentation techniques can improve timely
treatment for thousands of brain tumor patients annually. Furthermore, integrating au-
tomatic segmentation into routine clinical workflows could save physicians thousands
of hours of painstaking manual annotation and standardize segmentations otherwise
subject to inter-annotator variation. In this work, we have presented the application of
Graph Neural Networks to brain tumor segmentation from MRIs. With this work, we
provide several important contributions to the field. Firstly, we compare several com-
mon GNN variants and determine that GraphSAGE with the pooling aggregator per-
forms the best. Secondly, we show that, compared to CNNs designed for the same task,
GNN is less resource expensive and time-consuming to train. Lastly, we provide an in-
terpretation of our model’s predictions using Shapley value-based contribution scores.

A logical extension to this work is to combine the graph construction (involving
supervoxel generation) and graph prediction in an end-to-end model, similarly to [11].
While the use of supervoxels to represent the images improves computational efficiency,
our current model performance is heavily gated by the discrepancy between the SLIC
output and the true segmentation labels. The treatment of supervoxels which contain
voxels with different labels is poorly defined and consequently results in misclassified
voxels. Even a model that classifies every graph node correctly achieves a voxel-wise
Dice Whole Tumor score of only about 0.93 (Supplementary Fig. S2). A task-specific,
end-to-end approach has the potential to alleviate this concern and increase performance
substantially. End-to-end training would allow graph nodes to be delineated in greater
accordance with the underlying tumor subregions, limiting the number of supervoxels
spanning multiple labels. Furthermore, it would allow the model to learn node descrip-
tors, which would likely be more informative than hand-engineered summary statistics
for each modality. Another direction for future improvement is training the model hi-
erarchically, that is, first determining the outline of the tumorous region(s) as a whole,
and then segmenting each tumor subtype within the tumorous region. Most brain tumor
segmentation models are effective at outlining the gross tumor, but struggle to delin-
eate tumor compartments [4]. Such a training scheme should allow for a more nuanced
capacity to distinguish the regions.
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1 Supplementary Information

Fig. S1: The achievable segmentation accuracy as a function of supervoxel number and
compactness. More supervoxels increase the achievable accuracy.

Fig. S2: Boxplot of Dice scores for the same brains computed by voxel vs. by supervoxel
(node). Results shown for both test and train set. **** shows p < 0.0001 in paired t-
test. Across every comparison, Dice scores calculated on voxels are significantly lower
than when calculated by node. This effect is especially pronounced on the test set.

Table S1: Hausdorff Distances (95 percentile) calculated on test set for our model and
nnUnet. Both median and mean scores are reported.

Test Set Results
Statistic Median Mean

Tumor Compartment WT TC ET WT TC ET
nnU-Net [9] 2.828 2.27 1.414 4.645 6.17 5.011
GSpool-30 4.359 5.10 3.317 7.60 10.30 5.45
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